metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[tetraaquazinc(II)]-µ-1,3,4thiadiazol-2,5-divldithiodiacetato- $\kappa^2 O:O'$

Ying-Hui Yu,^a Chuan He,^b Guang-Feng Hou,^a Jin-Sheng Gao^a* and Hong-Kun Zhang^c

^aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, ^bSchool of Resources and Safety Engineering, China University of Mining and Techology (Beijing Campus), Beijing 100083, People's Republic of China, and ^cDepartment of Food and Environmental Engineering, Heilongjiang East College, Harbin 150086, People's Republic of China Correspondence e-mail: hgf1000@163.com

Received 12 April 2008; accepted 5 May 2008

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.003 Å; R factor = 0.021; wR factor = 0.047; data-to-parameter ratio = 15.3.

In the title linear coordination polymer, $[Zn(C_6H_4N_2O_4S_3) (H_2O)_4]_n$, the Zn^{II} atom is coordinated by four O atoms from four water molecules and two O atoms from two [5-(carboxylatomethylsulfanyl)-1,3,4-thiadiazol-2-ylsulfanyl]acetate units in an octahedral coordination environment. The chains are linked into a three-dimensional supramolecular network via $O-H \cdots O$ and $O-H \cdots N$ hydrogen bonds.

Related literature

For the structure of other metal 1,3,4-thiadiazolyl-2,5-dithioacetates, see Gao et al. (2005, 2006); Zhang et al. (2006).

Experimental

Crystal data

 $[Zn(C_6H_4N_2O_4S_3)(H_2O)_4]$ $M_r = 401.73$ Monoclinic, P21 a = 5.1554 (10) Åb = 9.5043 (19) Åc = 13.627 (3) Å $\beta = 94.82 \ (3)^{\circ}$

$V = 665.3 (2) \text{ Å}^3$	
Z = 2	
Mo $K\alpha$ radiation	
$\mu = 2.35 \text{ mm}^{-1}$	
T = 291 (2) K	
$0.42 \times 0.18 \times 0.18$ mm	ı

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\rm min} = 0.439, \ T_{\rm max} = 0.675$

Refinement

R[

$R[F^2 > 2\sigma(F^2)] = 0.021$	H-atom parameters constrained
$wR(F^2) = 0.046$	$\Delta \rho_{\rm max} = 0.26 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.06	$\Delta \rho_{\rm min} = -0.33 \text{ e} \text{ Å}^{-3}$
2774 reflections	Absolute structure: Flack (1983),
181 parameters	1151 Friedel pairs
1 restraint	Flack parameter: 0.014 (8)

6408 measured reflections

 $R_{\rm int} = 0.022$

2774 independent reflections

2624 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O5−H6···O3	0.85	2.53	2.971 (3)	113
$O5-H6\cdots O6^{i}$	0.85	2.23	3.053 (3)	165
$O5-H5\cdots N2^{i}$	0.85	2.05	2.897 (3)	172
O6−H8···O4 ⁱⁱ	0.85	2.02	2.762 (2)	145
O6−H7···O7 ⁱⁱ	0.85	2.36	3.116 (3)	148
O7−H10···O3 ⁱⁱⁱ	0.85	1.94	2.770 (3)	166
O7−H9···O1 ^{iv}	0.85	2.61	2.992 (2)	109
$O7 - H9 \cdots O2^{iv}$	0.85	1.85	2.680 (3)	166
$O8-H12\cdots N1^{i}$	0.85	1.98	2.819 (3)	172
$O8-H11\cdots O1^{v}$	0.85	1.87	2.713 (2)	175

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z + 1$; (ii) x - 1, y, z; (iii) $-x, y + \frac{1}{2}, -z + 1$; (iv) x, y, z - 1; (v) x + 1, y, z - 1.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The authors thank Heilongjiang University for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2446).

References

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gao, J.-S., Hou, G.-F., Yu, Y.-H., Hou, Y.-J. & Yan, P.-F. (2006). Acta Cryst. E62, m2913-m2915.
- Gao, S., Huo, L.-H., Zhao, H. & Ng, S. W. (2005). Acta Cryst. E61, m126-m128. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Zhang, X.-F., Gao, S., Huo, L.-H. & Gao, J.-S. (2006). Acta Cryst. E62, m39m41.

supplementary materials

Acta Cryst. (2008). E64, m794 [doi:10.1107/S1600536808013251]

catena-Poly[[tetraaquazinc(II)]- μ -1,3,4-thiadiazol-2,5-diyldithiodiacetato- $\kappa^2 O:O'$]

Y.-H. Yu, C. He, G.-F. Hou, J.-S. Gao and H.-K. Zhang

Comment

1,3,4-Thiadiazolyl-2,5-dithioacetic acid is a multidentate flexible aromatic carboxylic acid having two $-S-CH_2CO_2H$ arms, and its N atoms can be considered as a potential coordinate candidate which also would coordinate with metal atoms fomed a supramolecular complexes. The structure of 1,3,4-Thiadiazolyl-2,5-dithioacetic acid was reported by Gao *et al.* (2005) and Zhang *et al.*, (2006). In this paper, we reporte a new one-dimensional title compound crystal structure, synthesized by the reaction of 1,3,4-Thiadiazolyl-2,5-dithioacetic acid and zinc dichloride in aqueous solution.

Complex (I) consists of molecules of tetraaquazinc(II)-1,3,4-thiadiazol-2,5-diyldithiodiacetato. The zinc atom is six-coordinated in an octahedron environment (Figure 1), each zinc atom connect with two 1,3,4-Thiadiazolyl-2,5-dithioacetic acid ligand and four water molecules formed a one-dimensional chain structure along c axis (Figure 2).

There are eight symmetry-independent 'active' H atoms in the crystal structure; all of them participate in hydrogen bonds, which link the one-dimensional chain structure into an infinite three-dimensional network (Table 1, Figure 3).

Experimental

1,3,4-Thiadiazolyl-2,5-dithioacetic acid was prepared from 2,5-dimercapto-1,3,4-thiadiazole, using the method for synthesis of benzene-1,2-dioxyacetic acid reported by us (Gao *et al.*, 2006). The colorless zinc complex was obtained from the reaction of zinc dichloride hexahydrate (0.244 g, 1 mmol) and 1,3,4-Thiadiazolyl-2,5-dithioacetic acid (0.532 g, 2 mmol) in hot water (20 ml), and then the pH was adjusted to about 6 with 0.2 M sodium hydroxide. The resulting solution was filtered and allowed to stand in a desiccator at room temperature for several days.

Refinement

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.97 Å (methylene) and with $U_{iso}(H) = 1.2U_{eq}(C)$. Water H atoms were initially located in a difference Fourier map but they were treated as riding on their parent atoms with O—H = 0.85 Å, and with $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 30% probability level for non-H atoms.

Fig. 2. One-dimensional chain structure of the title complex. H atoms have been omitted for clarity.

Fig. 3. A partial packing view, showing the three-dimensional hydrogen-bonding network. Dashed lines indicate the hydrogen-bonding interactions. H atoms not involved in hydrogen bonds have been omitted for clarity.

$catena - Poly[[tetraaquazinc(II)]-\mu-1,3,4-thiadiazol-2,5-\ \ diyldithiodiacetato-\kappa^2O:O']$

 $F_{000} = 408$

 $\theta = 3.0-27.5^{\circ}$ $\mu = 2.35 \text{ mm}^{-1}$ T = 291 (2) KBlock, colorless $0.42 \times 0.18 \times 0.18 \text{ mm}$

 $D_{\rm x} = 2.005 {\rm Mg m}^{-3}$ Mo Kα radiation $\lambda = 0.71073 \text{ \AA}$

Cell parameters from 6179 reflections

Crystal data
[Zn(C ₆ H ₄ N ₂ O ₄ S ₃)(H ₂ O) ₄]
$M_r = 401.73$
Monoclinic, P2 ₁
Hall symbol: P 2yb
<i>a</i> = 5.1554 (10) Å
<i>b</i> = 9.5043 (19) Å
c = 13.627 (3) Å
$\beta = 94.82 \ (3)^{\circ}$
$V = 665.3 (2) \text{ Å}^3$
Z = 2

Data collection

Rigaku R-AXIS RAPID diffractometer	2774 independent reflections
Radiation source: fine-focus sealed tube	2624 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.022$
T = 291(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 3.0^{\circ}$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$h = -6 \rightarrow 6$
$T_{\min} = 0.439, T_{\max} = 0.675$	$k = -11 \rightarrow 12$
6408 measured reflections	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.021$	$w = 1/[\sigma^2(F_o^2) + (0.0189P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.046$	$(\Delta/\sigma)_{\text{max}} = 0.001$
<i>S</i> = 1.06	$\Delta \rho_{\text{max}} = 0.26 \text{ e} \text{ Å}^{-3}$
2774 reflections	$\Delta \rho_{min} = -0.32 \text{ e} \text{ Å}^{-3}$

181 parameters	Extinction correction: none
1 restraint	Absolute structure: Flack (1983), 1151 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.014 (8)
Secondary atom site location: difference Fourier map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	-0.1447 (4)	0.4252 (3)	1.17156 (18)	0.0201 (5)
C2	-0.3790 (4)	0.4114 (3)	1.09577 (18)	0.0218 (5)
H1	-0.5359	0.4172	1.1301	0.026*
H2	-0.3749	0.3184	1.0665	0.026*
C3	-0.1709 (4)	0.4813 (2)	0.92174 (18)	0.0199 (5)
C4	0.1357 (4)	0.3689 (2)	0.82727 (18)	0.0213 (5)
C5	0.4372 (4)	0.3491 (3)	0.67199 (16)	0.0211 (4)
Н3	0.4337	0.4499	0.6833	0.025*
H4	0.6113	0.3248	0.6558	0.025*
C6	0.2476 (4)	0.3147 (2)	0.58475 (18)	0.0207 (5)
N1	-0.1311 (4)	0.5509 (2)	0.84268 (16)	0.0278 (5)
N2	0.0486 (4)	0.4848 (2)	0.78684 (16)	0.0280 (5)
01	-0.1686 (3)	0.3552 (2)	1.24944 (12)	0.0262 (4)
O2	0.0419 (3)	0.5006 (2)	1.15424 (13)	0.0272 (4)
O3	0.0336 (3)	0.2622 (2)	0.59581 (14)	0.0328 (4)
O4	0.3282 (3)	0.3463 (3)	0.50187 (11)	0.0275 (3)
O5	-0.0626 (3)	0.14243 (19)	0.39464 (14)	0.0290 (4)
H5	-0.0598	0.0891	0.3447	0.044*
H6	0.0049	0.1028	0.4466	0.044*
O6	-0.2103 (3)	0.45593 (19)	0.44603 (14)	0.0279 (4)
H7	-0.3137	0.5040	0.4074	0.042*
H8	-0.3032	0.3988	0.4759	0.042*
07	0.2564 (3)	0.54165 (19)	0.33802 (14)	0.0274 (4)
Н9	0.2034	0.5402	0.2772	0.041*
H10	0.1894	0.6112	0.3658	0.041*
O8	0.3690 (3)	0.2453 (2)	0.29289 (14)	0.0291 (4)
H11	0.5185	0.2761	0.2817	0.044*
H12	0.3081	0.1896	0.2479	0.044*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

S 1	-0.40220(11)	0 53897 (6)	0.0	9806 (5)	0.02380 (13)	
S1 S2	0.00595 (10)	0.33877 (0)	0.9	3689 (J)	0.02350(13)	
S2 S3	0.00595(10) 0.37405(12)	0.32704 (7)	0.7	(4) (8411 (5)	0.02537(12) 0.02603(14)	
35 Zn1	0.97403(12) 0.09545(4)	0.34105 (3)	0.7	74965 (19)	0.02003(14)	
2.111	0.09545 (4)	0.54105 (5)	0.5	(19)	0.02112 (7)	
Atomic displa	cement parameters	(\AA^2)				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0183 (10)	0.0232 (12)	0.0194 (14)	0.0027 (9)	0.0046 (9)	-0.0024 (10)
C2	0.0213 (10)	0.0259 (12)	0.0183 (13)	-0.0012 (9)	0.0025 (9)	0.0012 (10)
C3	0.0216 (11)	0.0202 (12)	0.0177 (13)	0.0025 (9)	0.0008 (8)	-0.0002 (9)
C4	0.0243 (10)	0.0253 (14)	0.0143 (12)	0.0034 (9)	0.0026 (8)	0.0016 (9)
C5	0.0212 (9)	0.0246 (11)	0.0180 (11)	0.0037 (11)	0.0039 (8)	0.0002 (12)
C6	0.0219 (10)	0.0218 (13)	0.0187 (12)	0.0012 (9)	0.0043 (8)	-0.0012 (9)
N1	0.0349 (11)	0.0273 (11)	0.0222 (12)	0.0108 (9)	0.0086 (9)	0.0074 (9)
N2	0.0352 (11)	0.0306 (12)	0.0193 (12)	0.0100 (9)	0.0089 (9)	0.0079 (9)
01	0.0229 (7)	0.0355 (10)	0.0199 (9)	-0.0069 (8)	-0.0007 (6)	0.0066 (9)
02	0.0226 (8)	0.0360 (10)	0.0233 (10)	-0.0072 (7)	0.0047 (7)	0.0047 (8)
O3	0.0296 (9)	0.0432 (11)	0.0261 (11)	-0.0132 (8)	0.0053 (8)	0.0036 (9)
O4	0.0249 (7)	0.0422 (9)	0.0159 (8)	-0.0072 (9)	0.0044 (6)	-0.0006 (10)
05	0.0394 (10)	0.0293 (9)	0.0182 (10)	-0.0110 (8)	0.0016 (7)	-0.0012 (8)
O6	0.0249 (8)	0.0308 (10)	0.0291 (11)	-0.0037 (7)	0.0088 (7)	0.0034 (8)
07	0.0337 (9)	0.0244 (9)	0.0250 (10)	-0.0053 (7)	0.0079 (7)	-0.0032 (8)
08	0.0223 (8)	0.0364 (11)	0.0296 (11)	-0.0093 (7)	0.0075 (7)	-0.0132 (8)
S1	0.0246 (3)	0.0267 (3)	0.0207 (3)	0.0070 (2)	0.0053 (2)	0.0032 (2)
S2	0.0284 (2)	0.0245 (3)	0.0185 (3)	0.0081 (3)	0.0058 (2)	0.0065 (3)
S3	0.0302 (3)	0.0303 (3)	0.0183 (3)	0.0106 (3)	0.0058 (2)	0.0043 (3)
Zn1	0.02055 (11)	0.02492 (14)	0.01799 (14)	-0.00523 (11) 0.00214 (9)	-0.00268 (13)
Geometric pa	arameters (Å, °)					
C1—O2		1.238 (3)	C6	04	1.2	72 (3)
C1—O1		1.267 (3)	N1	—N2	1.3	97 (3)
C1—C2		1.527 (3)	01	—Zn1 ⁱ	2.0	989 (17)

C1—C2	1.527 (3)	O1—Zn1 ⁱ	2.0989 (17)
C2—S1	1.797 (2)	O4—Zn1	2.0209 (17)
С2—Н1	0.9700	O5—Zn1	2.0824 (18)
С2—Н2	0.9700	O5—H5	0.8500
C3—N1	1.295 (3)	O5—H6	0.8500
C3—S2	1.730 (2)	O6—Zn1	2.2072 (17)
C3—S1	1.736 (2)	O6—H7	0.8500
C4—N2	1.295 (3)	O6—H8	0.8500
C4—S2	1.734 (2)	O7—Zn1	2.1557 (18)
C4—S3	1.742 (2)	О7—Н9	0.8501
C5—C6	1.510 (3)	O7—H10	0.8500
C5—S3	1.797 (2)	O8—Zn1	2.0815 (17)
С5—Н3	0.9700	O8—H11	0.8500
C5—H4	0.9700	O8—H12	0.8500
C6—O3	1.231 (3)	Zn1—O1 ⁱⁱ	2.0989 (17)

O2-C1-O1	126.5 (2)		Zn1—O5—H6		111.8
O2—C1—C2	120.2 (2)		Н5—О5—Н6		111.7
O1—C1—C2	113.2 (2)		Zn1—O6—H7		115.4
C1—C2—S1	116.27 (17)		Zn1—O6—H8		110.2
C1—C2—H1	108.2		H7—O6—H8		106.9
S1—C2—H1	108.2		Zn1—O7—H9		96.6
С1—С2—Н2	108.2		Zn1—O7—H10		113.9
S1—C2—H2	108.2		H9—O7—H10		109.7
H1—C2—H2	107.4		Zn1—O8—H11		127.7
N1—C3—S2	114.44 (18)		Zn1—O8—H12		115.7
N1—C3—S1	120.11 (17)		H11—O8—H12		111.7
S2—C3—S1	125.31 (14)		C3—S1—C2		102.97 (11)
N2—C4—S2	114.60 (17)		C3—S2—C4		86.59 (11)
N2-C4-S3	125.98 (19)		C4 = 83 = C5		101.23 (12)
82—C4—83	119.35 (13)		04 - 2n1 - 08		95.17(7)
C6 = C5 = U2	114.00 (17)		04-2n1-05		97.00 (8)
Со—Сэ—Нз S3—С5—Н3	108.6		$08-2\pi 1-03$		87.88(7) 173 48(9)
C6 C5 H4	108.6		$04-2\pi 1-01^{ii}$		173.48(7)
C0-C5-114 S2 C5 H4	108.6		08 - 2n1 - 01		90.71 (7) 85.04 (7)
33-05-114	108.0		05-2n1-01		83.94 (7)
$H_3 = C_5 = H_4$	107.6		04-2n1-07		88.02 (8)
03 - 00 - 04	124.0(2) 121.2(2)		05 - 2n1 - 07		173.88(8)
04 C6 C5	121.2(2) 114.17(10)		03-211-07		175.88 (8) 80.36 (7)
C2 N1 N2	114.17(19)		01 - 2n1 - 07		89.30 (7) 90.40 (7)
C3 = N1 = N2 C4 = N2 = N1	112.4(2) 111.9(2)		04-211-00 08-7n1-06		90.40 (7) 173 27 (8)
$C1 - O1 - 7n1^{i}$	127.90 (15)		O_5 —Zn1— O_6		95.18 (7)
C6-O4-Zn1	122.62 (14)		01^{ii} 7n1 06		83 55 (7)
Zn1-05-H5	113.8		01 = 211 = 00 07 = 7n1 = 06		88 17 (6)
Symmetry codes: (i) $x, y, z+$	1; (ii) <i>x</i> , <i>y</i> , <i>z</i> –1.		0, 211 00		00117 (0)
Hydrogen-bond geometry	(Å, °)				
<i>D</i> —H…A		<i>D</i> —Н	H…A	$D \cdots A$	D—H···A
О5—Н6…О3		0.85	2.53	2.971 (3)	113
O5—H6…O6 ⁱⁱⁱ		0.85	2.23	3.053 (3)	165
O5—H5…N2 ⁱⁱⁱ		0.85	2.05	2.897 (3)	172
O6—H8···O4 ^{iv}		0.85	2.02	2.762 (2)	145
O6—H7…O7 ^{iv}		0.85	2.36	3.116 (3)	148
O7—H10…O3 ^v		0.85	1.94	2.770 (3)	166
07—H9…O1 ⁱⁱ		0.85	2.61	2.992 (2)	109
07—H9…O2 ⁱⁱ		0.85	1.85	2.680 (3)	166
O8—H12···N1 ⁱⁱⁱ		0.85	1.98	2.819(3)	172

08—H11…O1^{vi} 2.713 (2) Symmetry codes: (iii) -*x*, *y*-1/2, -*z*+1; (iv) *x*-1, *y*, *z*; (v) -*x*, *y*+1/2, -*z*+1; (ii) *x*, *y*, *z*-1; (vi) *x*+1, *y*, *z*-1.

0.85

1.87

175

Fig. 2

D **\$**~ \mathcal{Q}

